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Fig. 1: 3DiFACE is a novel diffusion-based method for synthesizing and editing holistic
3D facial animation from an audio sequence, wherein one can synthesize a diverse set
of facial animations (top), seamlessly edit facial animations between two or multiple
user-specified keyframes, and extrapolating motion from past motion (bottom).

Abstract. Creating an animation of a specific person with audio-synced
lip motions, realistic head motion and editing via artist-defined keyframes
are a set of tasks that challenge existing speech-driven 3D facial anima-
tion methods. Especially, editing 3D facial animation is a complex and
time-consuming task carried out by highly skilled animators. Also, most
existing works overlook the inherent one-to-many relationship between
speech and facial motion, where multiple plausible lip and head anima-
tions could sync with the audio input. To this end, we present 3DiFACE,
a novel method for holistic speech-driven 3D facial animation, which
produces diverse plausible lip and head motions for a single audio input,
while also allowing editing via keyframing and interpolation. 3DiFACE is
a lightweight audio-conditioned diffusion model, which can be fine-tuned
to generate personalized 3D facial animation requiring only a short video
of the subject. Specifically, we leverage the viseme-level diversity in our
training corpus to train a fully-convolutional diffusion model that pro-
duces diverse sequences for single audio input. Additionally, we employ
a modified guided motion diffusion to enable head-motion synthesis and
editing using masking. Through quantitative and qualitative evaluations,
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we demonstrate that our method is capable of generating and editing di-
verse holistic 3D facial animations given a single audio input, with control
between high fidelity and diversity.

1 Introduction

Synthesizing and editing 3D holistic facial animations is essential for enhancing
digital experience in gaming, films, and interactive media. This involves gener-
ating realistic lip and head movements that are synchronized with the audio.
Early works [9, 15] employed procedural-based rules that map audio features
to facial animation parameters. With the evolution of machine learning, data-
driven approaches have become prevalent, allowing for audio-conditioned facial
animations [10,18,39,42,58,62].

Despite these advancements, existing methods only focus on generating facial
motion, they do not tackle the issue of editing, such as creating intermediate
facial animations between two or multiple, user-specified keyframes (refer to
Table 1). Notably, diffusion-based facial motion synthesis methods [1,6,48,49],
where editing could be considered as a byproduct of diffusion models, are not
demonstrating this. The design choices inherent in these current models, such as
the employment of auto-regressive mechanisms or transformer decoders with a
look-ahead mask in self-attention and a lack of personalization to a new target
identity, are preventing them from effectively addressing the task of editing facial
motions. While recent works [1, 6, 48, 49] focus on showcasing diversity in eye-
blinks and upper face motion, which has a weak (if any) correlation with the
audio, we argue that capturing variations in lip motion in a natural motion
sequence is important. In our experiments, we demonstrate how a given audio
can be lip-synced in varied but plausible ways, which is a critical part of the
animation pipeline and movie dubbing, especially, when edited by an artist.

In this work, we propose a diffusion-based architecture for speech-driven
holistic 3D facial animation synthesis and editing to address this gap. In doing so,
we face three main challenges: (i) Facial movements are highly person-specific.
For facial motion editing, if the speaking style of the edited region doesn’t match
the style to the target sequence, the sudden shift in speaking style between the
edited and unedited motion (the keyframes) leads to unrealistic animations (re-
fer to Figure 6). (ii) Standard diffusion based inbetweening on head motion data
struggles to reproduce the imputation signal in the unedited areas resulting in
jittery and unrealistic transitions, which is similar to boundary artifact in the
image domain as discussed in [7]. Additionally, in case of editing using keyframes,
the model often completely ignores the sparse keyframe signal, as also observed
in [31] (refer to Figure 7). (iii) Diffusion models are known to require large
training sets [43], yet the size of existing high-quality speech-to-3D-animation
datasets is limited. Additionally, for personsalization of speaking-style the pro-
posed model should be capable of fine-tuning on short video (1min) of the target
subject. Recent works such as EMOTE [13] and DiffPoseTalk [49] employ head
trackers to annotate large-scale-video datasets with pseudo ground truth data
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and train their models on the resulting dataset. While effectively solving data
scarcity, the synthesis fidelity is limited by the quality of the trackers and it is
inferior to models that were trained on smaller datasets with higher quality [10],
as reported by EMOTE [13].

To address the aforementioned challenges (i) and (iii), we propose a 1D con-
volutional U-net architecture that can be trained on smaller VOCAset and fine-
tuned using short 1min reference video of the target subjects. Especially, the
fully convolutional nature of our method allows to sub-divide the input sequence
into viseme-level motion segments (e.g., 30 frames) during training and general-
ize to sequences of arbitrary length at inference time. We empirically found this
combination of dividing the input sequence into smaller segments and employing
a fully convolutional architecture as a key factor for successfully training the dif-
fusion model in both the unconditional synthesis and the style-personalization.
Intuitively, we leverage the viseme-level motion diversity present in the dataset
to train/fine-tune our method and generate diverse sequence-level samples for
a single audio input. In addition, we utilize the classifier-free-guidance [27] in
our approach to offer an extra control that can blend between fidelity (lip-sync)
and diversity based on the use-case (refer to Figure 8). To address the challenge
of editing head motion, we draw inspiration from Guided Motion Diffusion [31]
and employ a modified Guided motion diffusion approach. Specifically, we replace
portions of the noisy sequence with ground truth data and enforce the model to
precisely replicate the samples within the ground truth region. This enables the
model to faithfully reproduce the sample in the unedited region during diffusion
sampling allowing for smoother and natural head-motion editing.

Through quantitative, qualitative, and perceptual evaluation, we demon-
strate the superiority of our method in producing diverse personalized facial
animation with natural head motions, enabling the synthesis and editing holis-
tic 3D facial animation. We demonstrate the importance of our architecture
design choices, data-efficiency and robustness in detailed ablation studies.

In summary, our contributions are twofold:
– We propose a speech-driven diffusion model for synthesizing diverse, realistic

and temporally coherent holistic 3D facial animations.
– To the best of our knowledge, this work constitutes the first attempt to

demonstrate pioneering results on two relatively unexplored and challenging
research problems: (1.) 3D facial animation editing, such as seamless motion
interpolation, keyframing and (2.) unconditional facial animation synthesis.

2 Related Work

Numerous studies have explored speech-driven generation, primarily focusing on
synthesizing 2D talking head videos. However, for applications in 3D content
creation like games, movies, and immersive telepresence, speech-driven 3D facial
animation has raised significant attention in the research community.

Approaches for talking head video generation can be broadly categorized
into two groups: direct generation of RGB videos from speech and the use of a
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Personalization ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓
Head-motion ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓
Diversity ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓
Editing ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Table 1: Summary of the state-of-the-art 3D facial animation synthesis methods.
From the table, we can see that only our proposed method is capable of expression
personalization, head-motion generation, synthesizing diverse samples and editing 3D
animation. ∗ - represents concurrent works.

3D Morphable Model (3DMM) for guided rendering. Suwajanakorn et al. [50]
propose a recurrent method to to predict person-specific 2D lip landmarks to
guide 2D image generation. Chung et al. [8] propose a real-time method map-
ping audio input directly to RGB video output. Temporal generative adversarial
networks (GANs) have also been employed [55, 66] to address this problem. In
another line of work, Zhou et al. [66] disentangles content from style and speaker
identity, enabling diverse speech-driven generation. In the second category, an
intermediate 3DMM [4,16] guides 2D neural rendering of talking heads from au-
dio [47,54,61,64,65], with a focus on facial expressions. Extending these, Wang
et al. [57] add the head movements of the speaker to the synthesis. Several
works [24, 59] leverage dynamic neural radiance fields [21] to learn personalized
audio-driven talking head models.

In addition to 2D talking head generation, a number of studies explored
speech-driven 3D facial animation. Traditional procedural techniques [14,
15,17,29] animate pre-defined facial rigs through procedural rules. With the ad-
vent of deep learning, however, these methods have been extended by learning-
based approaches [5,10,18,30,42,51,53,54], directly learning viseme patterns from
data. Procedural techniques used hierarchical Hidden Markov Models [2, 25, 45]
to produce 3DMM parameter space or directly to 3D meshes from audio inputs.
Karras et al. [30] propose a learning-based model from a small scale but high
quality data, demonstrating a strong baseline at the cost of limited generaliza-
tion. VOCA [10], on the other hand, is trained on multiple subjects, enabling
further generalization. However, the generalization remains limited as it requires
one-hot encoding of identities at inference time. Notably, MeshTalk [42], Face-
Former [18], and CodeTalker [58] adopt various strategies for speech-driven 3D
facial animation to enable better generalization while maintaining high quality
of generated motions. In another work, EMOTE [13] employs EMOCA [12] to
generate pseudo-ground truth meshes of the MEAD [56] dataset, enabling it to
generate speech-driven facial animation with various emotions style. Similarly,
DiffPoseTalk [49] utilizes the pseudo-ground truth from HDTF [65] dataset to
generate holistic 3D facial animation. FaceTalk [1] trains a latent-diffusion model
on a custom 3D dataset generate volumetric 3D animation with diversity.
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Table 1 underscores the significance of our method, the first to address the
challenging task of synthesizing and editing diverse 3D facial animations holisti-
cally from a single audio input, which is an integral part of animation pipelines.

3 Method

Our goal is to synthesize and edit holistic 3D facial animation given input audio
signal. In this context, holistic facial animation refers to facial motion and head
motion which we model in two diffusion-based networks, motivated by the fact
that the face motion is highly correlated to the speech signal, while the head mo-
tion is relatively less correlated and thus requires a longer context of information,
hence, a different training scheme (and data). Following recent works [49,52], we
train a denoising model θ that can reverse this noisy diffusion and estimate the
original sample from a noised version guided by conditioning signal C. To add di-
versity for face motion synthesis, we employ Classifier-Free Guidance (CFG) [27]
and calculate the output as a weighted sum of the conditional and unconditional
prediction using the guidance scale s. In the following section, we discuss our
facial and head motion generators in Section 3.1 and Section 3.2 respectively.

Audio Encoding: Similar to other state-of-the-art methods [10, 18, 53, 58], we
adopt the pretrained Wav2Vec2.0 [2] to generate audio features from the raw
audio signal. Wav2Vec2.0 uses a self-supervised learning approach to map audio
to quantized feature vectors with 768 channels. We resample the encoder output
via linear interpolation to match the sampling rate of the motion sequences
(30fps for VOCAset [10]). A trainable linear layer is applied to project the feature
vectors to 64 channels, resulting in a speech representation Â ∈ RN×64 for N
frames.

3.1 Facial motion generator

Our diffusion-based facial motion generator takes an audio signal as input and
produces a sequence of 3D vertex displacements w.r.t. a template mesh by it-
erative denoising, see Figure 2,. Let x0 ∈ RN×D·3 denote such a sequence of
displacements, where N is the sequence length and D is the number of vertices
in the template mesh. The input to our diffusion model parameterized by θf is a
noisy vertex displacement sequence xt ∈ RN×D·3. The task is then to predict its
noise-free counterpart x̂0 = θf (xt, t, C), given diffusion step t and conditions C.
As a first step, we employ a single fully connected layer as Motion Encoder to
project xt to a 64-dimensional latent space. We positionally encode the diffusion
step t [46], map it to the latent space with a linear layer, and add it to the
encoded xt. We apply a series of 1D-convolution blocks to first reduce the tem-
poral dimension of the activations, followed by an upsampling convolution block
to restore the original temporal dimension. Each convolution block is followed
by a condition block to incorporate the audio features. The condition blocks
concatenate the input features with the audio and apply a dimension-preserving
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Fig. 2: Our method takes noised vertex displacements, denoted as xt, and the diffu-
sion time step embedding as inputs to predict a denoised sample x̂0, leveraging both
the audio conditioning signal Â and a person-specific feature vector Si. Our approach
employs wav2vec2.0 [2] for extracting audio features from the raw audio signal. The
audio condition is injected into the network by concatenation through a series of con-
volutional blocks. Note that N corresponds to the frame count of the sequence and D
to the number of vertices.

convolution. We add a person-specific feature vector Si ∈ R1×64 to the output of
the convolutional layers prior to applying the Motion Decoder. This procedure
yields the final noise-free sample x̂0, as illustrated in Figure 2. Similar to the
Motion Encoder, the Motion Decoder is a single fully connected layer. Note that
in our formulation, the condition C represents the set of both the per-frame
audio features Â and the person-specific feature vector Si.

In contrast to state-of-the-art methods on 3D facial animation synthesis that
utilize transformer architectures [18, 49, 53, 58], we take inspiration from Pavllo
et al. [38] and adopt a 1D-convolutional network as our backbone. Specifically,
instead of infusing the condition through an attention mechanism, we use fea-
ture concatenation. In particular, our fully convolutional architecture without
attention allows to sub-divide the input sequence into viseme-level motion seg-
ments (e.g., 30 frames) during training and generalize to sequences of arbitrary
length at inference time. We empirically observed that these modifications to
the architecture are essential for its effective training on the limited VOCA
training dataset [10] (refer to Table 3), especially on the unconditional training
setup. These modifications significantly enhance the model’s performance during
personalized fine-tuning on small, subject-specific datasets. Note that this strat-
egy is not viable for transformer-based 3D facial animation baselines, since it
struggles to capture any longer-term dependency beyond the predefined context
length leading to context fragmentation [11] and subpar performance. This issue
becomes even more pronounced in our training configuration, where we crop the
sequences to only 30 frames. While auto-regressive motion synthesis could in
theory mitigate this limitation, it would make the animation editing tasks, such
as inbetweening distant motion frames, impossible.
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Fig. 3: Illustration of standard diffusion (left) and our modified guided-motion-
diffusion (right), where in the forward diffusion process, part of the noisy input signal
is replaced with the ground truth signal and a guidance flag of (0) and (1) is concate-
nated to the noisy and ground truth regions respectively.

Training Similar to [49,52], we train our diffusion model to predict the ground
truth vertex displacements x0 from their noised counterparts xt:

Lsimple = ||x0 − θf (xt, t, C)||2. (1)

In comparison to predicting the applied noise which is common practice in re-
lated work [36, 43, 63], we empirically found that predicting the ground truth
displacements yields better convergence in the unconditional and person-specific
fine-tuning setup. Furthermore, we take inspiration from [10, 53] and add a ve-
locity loss Lvel to improve temporal smoothness:

Lvel =
1

N − 1

N∑
n=1

||(x0,n − x0,n−1)− (x̂0,n − x̂0,n−1)||2, (2)

where x0,n denotes the ground truth vertex displacements in frame n. Our final
training objective is formulated as:

Ltotal = Lsimple + λvel · Lvel. (3)

We set λvel = 10.0 unless specified otherwise. Note that during training, we
randomly set the audio condition C to 0 in 10% of the cases in order to enable
unconditional synthesis at inference time.

Person-Specific Fine-tuning For capturing the speaking style of a subject
that is not part of the training set, we require a short reference talking head
video. The facial movements are extracted with the state-of-the-art monocular
face tracker MICA [68]. We use the tracked meshes as pseudo ground truth and
fine-tune the entire model to fit the expression distribution of the target subject
using the training objective from Eq. (3).

3.2 Head-motion generator

Given an audio signal input, our head motion generator produces smooth and
natural head motions y0 ∈ RN×3, where N is the sequence length. We parameter-
ize the head motion via the neck joint rotation in the FLAME model [33], where
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the rotation is represented via axis angle. Motivated by the head-motion editing
issue mentioned in Section 1, we employ a modified guided motion diffusion for
the head motion synthesis. The original guided motion diffusion(GMD) [31] was
introduced to inject a spatial guidance signal into the full-body motion synthe-
sis problem. We draw inspiration from it and modify the spatial guidance with
an intra-sequence guidance injection, to highlight the relative importance of the
different segments in the input signal. Specifically, as illustrated in Fig. 3, during
the forward diffusion process, part of the noisy input is replaced with ground
truth signals, and a corresponding guidance flag of 0 or 1 (ground truth signal)
is concatenated. A denoising model parameterized by θh is trained to reverse
this diffusion process by leveraging this additional information.

Similar to the facial motion generator, we employ a fully convolutional archi-
tecture as our backbone for the head-motion denoising model. Additionally, we
introduce skip connections between the encoder and decoder layers, to aid the
model in reproducing the ground truth signals. For the audio encoder, we use
the pre-trained audio encoder from the facial motion synthesis pipeline, which
is kept frozen during the head-motion training. The final diffusion formulation
is represented as ŷ0 = θh(yt, t, C), given diffusion step t and audio conditions C.

Algorithm 1 Our GMD Training
1: repeat
2: y0 ∼ q(y0)
3: t ∼ Uniform({1, . . . , T})
4: ϵ ∼ N (0, I)
5: yt =

√
ᾱty0 +

√
1− ᾱtϵ

6: ȳt = yt ⊕ (0)
7: ȳ0 = y0 ⊕ (1)
8: yt = (1−Mt)⊙ ȳt +Mt ⊙ ȳ0
9: grad desc. ∇θh ∥y0 − θh(yt, t, C)∥2

10: until converged
11:
12:
13:

Algorithm 2 Our GMD Sampling
1: yT ∼ N (0, I)
2: Input signal Y0, if any
3: Imputation mask M0, if any
4: Ȳ0 = Y0 ⊕ (1)
5: for t = T, . . . , 1 do
6: ȳt = yt ⊕ (0)
7: yt = (1−M0)⊙ ȳt +M0 ⊙ Ȳ0

8: ŷ0 = θh(yt, t, C)
9: ŷ0 = (1−M0)⊙ ŷ0 +M0 ⊙ Y0

10: µ, σ ← µ(yt, ŷ0), σt

11: yt−1 ∼ N (µ, σ)
12: end for
13: return y0

Training The complete training and sampling procedure of modified guided-
motion diffusion is detailed in Algorithm 1 and Algorithm 2. In addition to the
losses used in the facial motion generator Section 3.1, we add an additional guid-
ing mask loss to enforce the model to faithfully reproduce the results in ground
truth signal injected into the sequence. The guidance loss can be formulated as:

Lmask = ||wn ⊙ (y0,n − θ(yt,n, t, C))||2, (4)
where n indicates the nth frame in the sequence y0 and wn is the guidance weight,
1 for the ground truth frames and zero otherwise.
4 Dataset

We train our facial motion model on the VOCAset [10], since it provides high-
quality, speech-aligned 3D face scan sequences. Following previous work [53], we
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Fig. 4: Our qualitative comparison shows that our method outperforms the baseline
in creating more accurate lip-synced facial animations with diverse head movements.
Specifically, TalkSHOW produces animations with jittery artifacts, while SadTalker
yields muted and generic animations.

use the train/val/test set split of 8, 2, 2 actors. All 40 sequences of the train-
ing actors are used during training. However, for the test and validation, only
20 sequences without overlap with the speech scripts of the training sequences
are used. We evaluate person-specific fine-tuning on in-the-wild video sequences
from Imitator [53]. The provided videos are 2 minutes long which we divide into
60/30/30 seconds for train/val/test respectively. To train our head-motion gen-
erator, we use the HDTF [65] dataset, as the VOCAset does not include large
variations of head motion. Using the download and processing script provided by
the authors, we extract 352 videos with 246 unique subjects and use the MICA
tracker [68] to extract head poses. For our experiments, we split the dataset into
300/20/32 sequences for train/val/test accordingly. In this work, we employ the
VOCAset, HDTF, and Imitator’s in-the-wild dataset to train our method for
generating and editing 3D facial animations with head-motion. This choice led
us to exclude the Biwi dataset [19] from our study, as it lacks sequences that
with full head model like FLAME [33], which is essential for synthesizing head
motion effectively. More details on the dataset is provided in the suppl. material.

5 Results

We evaluate our method against state-of-the-art methods: SadTalker [64] and
TalkShow [60] on the holistic 3D facial animation synthesis task and VOCA [10],
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Method DivL ↑ Lip-Sync ↓ BA ↑ DivH ↑

Non-Personalized regression

1 VOCA [10] − 5.30 − −
2 Faceformer [18] − 2.85 − −
3 Imitator [53] − 1.95 − −
4 CodeTalker [58] 1.40 2.55 − −
5 Ourss=0.5 (w/o sty) 2.57 1.71 − −

Non-Personalized diffusion

6 FaceDiffuser [48] 0.05 1.60 − −
7 Ourss=1.0 (w/o sty) 0.64 1.62 − −

Personalized synthesis

8 Imitator (w/ sty) − 1.35 − −
9 Ourss=0.5 (w/ sty) 1.57 1.56 − −
10 Ourss=1.0 (w/ sty) 0.24 1.42 − −

Holistic 3D Facial animation syn.

11 SadTalker [64] 1.59 4.01 0.285 0.004
12 TalkSHOW [60] 1.80 4.35 0.296 0.002
13 Ours composite 2.57 1.71 0.338 0.007

Table 2: Quantitative comparison: In gen-
eral, our proposed method produces bet-
ter holistic 3D facial animations with high-
fidelity lip and head motions (refer row 11-
13). In addition, ours allows for editing the
animation unlike the baselines. On the re-
gression and dission-based non-personalized
facial motion synthesis task (row 1-7), our
method produces more diverse and lip-
synced samples than the baselines, except
for FaceDiffuser, where we match the perfor-
mance on Lip-Sync despite producing more
diverse samples. Further, we see that our
method is able to personalize facial motions
on the level of Imitator [53], a method de-
signed for personalization, while producing
more diverse samples and allowing for mo-
tion editing using keyframes.

Method DivL ↑ Lip-Sync ↓

(a) Design choices

1 Ours (concat + win30) 2.57 1.71
2 Ours (attn + win30) 0 3.21
3 Ours (FF arch + win30) 0 3.49
4 Ours (concat + no win) 0 1.98

(b) Person-specific Fine-tuning

5 Ours (∼ 5s) 29.95 4.89
6 Ours (∼ 30s) 0.18 1.81
7 Ours (∼ 60s) 0.67 1.69
8 Ours (∼100s) 1.57 1.56

(c) Audio noise ablation

9 Ours (high noise) 6.41 2.56
10 Ours (med. noise) 2.54 1.97
11 Ours (low noise) 1.85 1.78

(d) GMD ablation

Method BA ↑ DivH ↑

12 Ours w. In mask 0.368 0.008
13 Ours w. KF mask 0.308 0.008
14 Ours w/o. mask 0.338 0.007

Table 3: Ablation study: (a) Design
choices: We show that the combina-
tion of a fully convolutional architec-
ture without attention or transformer
and viseme-level windowing is critical
for the training the model on the VO-
CAset [10] to produce diverse samples.
(b) Fine-tuning: Further, we show that
30s of video suffice to perform person-
specific fine-tuning while 100s further
improve all scores (row 6-9). (c) Noise:
Row 10-12 illustrates the robustness of
method w.r.t. medium and low audio
noise levels. (d) GMD ablation: shows
the performance of our method w.r.t
the imputation signal, our method pro-
duce better metrics compared to the
baselines irrespective of the imputation
signal.

Faceformer [18], CodeTalker [58], EMOTE [13], FaceDiffuser [48] and Imita-
tor [53] on facial motion synthesis task. Figure 4 presents the qualitative com-
parison on holistic 3D motion synthesis, where our method produces more ac-
curate lip-synced facial animations with diverse head movements. A qualitative
comparison to the facial motion synthesis baselines on a test sequence from the
VOCAset is shown in Figure 5, where our method produces expressive facial
animations that matches the speaking style of the target subject. Additional
qualitative results are shown in the suppl. video.

Quantitative Comparison: In Table 2, we present a quantitative evaluation
based on the following metrics: Lip-Sync measures the lip synchronization using
Dynamic Time Warping to compute the temporal similarity [53]. Diversity metric
DivL and DivH proposed by Ren et al. [41] measures the diversity of lip motion
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and head motion generated from the same audio. Similar to DiffPoseTalk [49],
we employ a modified beat alignment BA to measure the synchronization of the
head movement beats.

In Table 2 (rows 11-13), holistic 3D facial animation synthesis is evaluated,
and it is evident that ours significantly surpasses the baselines, particularly, in
terms of lip-sync accuracy and beat alignment, offering greater diversity.

For the facial motion synthesis task without head motion, we quantitatively
compare our method on 3 different setups namely, non-personalized regression
and diffusion and personalized synthesis. On the non-personalized regression
setup, we find that our method with the guidance scale of s = 0.5, outperforms
the baseline on synthesis diversity (by over 80%) and Lip-Sync (see row 1 and 5
of Table 2). On the non-personalized diffusion, our model with the guidance scale
s = 1.0 matches FaceDiffuser [48] on Lip-Sync, while significantly outperform-
ing it on diversity. Note that we can use the guidance scale parameter to freely
trade synthesis diversity for lip-sync accuracy, which is not possible in FaceD-
iffuser [48]. Figure 8 indicate that adjusting the guidance scale parameter s
within 0.3 ≤ s ≤ 1.0, effectively enhances the lip-motion diversity, surpassing all
baseline methods, while only slightly diminishing lip-sync accuracy. Finally, on
the personalization synthesis setup, we achieve higher synthesis diversity com-
pared to Imitator [53] and match the performance closely on Lip-Sync. Note
that Imitator is a deterministic model that does not allow for diverse lip-motion
synthesis and facial motion editing.

User Study: We conducted A/B user studies to assess our method’s perceptual
performance. For the facial motion synthesis task, we compare our method on
a high diversity (s = 0.5) and high fidelity (s = 1.0) setup. In the high fidelity
setup, we outperform the baselines in terms of both expressiveness and lip-
synchronization. Even on a extreme the high diversity setup, we outperform
CodeTalker [58] and perform closely to FaceDiffuser [48], which produces high-
fidelity samples at the expense of diversity. Furthermore, we assessed how well
our personalized model preserves speaking styles by comparing it to Imitator,
the sole baseline model that offers personalization capabilities. To this end, the
users rated the similarity based on a reference video and the synthesized videos
of the VOCA test set, where 55% of the users preferred our method. Finally, we
evaluated our method on the holistic 3D facial animation task. In Table 4 (row
6-8) we can see that our method generates significantly better facial animations
with plausible facial motion and natural head motion. For more details on the
user-study, please refer to our supplemental material.

Motion Editing: We show motion editing using keyframes in Figure 6. In this
application, we selectively replace the predicted denoised vertex-displacement
sequences x̂0 with ground truth values during the denoising process. This is sim-
ilar in spirit to well-established diffusion-based image inpainting methods [35].
We additionally show unconditional motion synthesis and editing results in the
supplemental material. As can be seen in Figure 6, the personalization of the
motion synthesis is important to match the talking style, preventing an abrupt
style change. In Figure 7, we visualize the trajectory of the edited head-motions.
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Fig. 6: Qualitative evaluation of the im-
portance of person-specific finetuning for
motion editing. As highlighted in pur-
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Fig. 7: Impact of our Guided motion dif-
fusion (GMD) on the head-motion edit-
ing. Without GMD the model cannot
faithfully reproduce the imputation signal
resulting in a jittery transition between
the edited and unedited regions. Addi-
tionally, without GMD the model ignores
the sparse keyframes completely.
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We can see that without our proposed guided motion diffusion there is a sharp
transition between the edited and unedited head-motion, as a result the final
motion will have jitter artifacts which look unrealistic.

Ablation: In the following, we will address important questions regarding our
design choices and robustness.

• Is a 1D-convolutional U-net architecture the right choice? As discussed in
Section 3 using our proposed architecture instead of the transformer-based ar-
chitecture from Faceformer or the attention-based Unet architectures used in [36]
results in significantly better performance on both the Lip-Sync and diversity
(refer to Table 3 rows 1-3).

• What is the effect of viseme-level window-based training? Table 3 row 1 vs
4 shows that without window-based training the performance worsens in terms
of both lip-sync and diversity. Further, in the suppl. video, we demonstrate the
ability of our method to generate 20 sec long motion compared to the baselines,
despite being trained only on 1 sec segments.

• How much data do we need for person-specific fine-tuning? Table 3 rows 5-8
indicate 30 and 60 seconds of data are sufficient for good results, 100 seconds
yield the best lip-sync and diversity DivL.

• How robust is it to noisy input audio ? As reported in Table 3 rows 9-11,
our method produces robust high-quality facial animations for low(36db) and
medium(24db) noise levels.

• Does the guided-motion-diffusion help to generate diverse motion? On Table 3
rows 12-14, we analyze the effect of our keyframe(KF mask) and inbetweening(In
mask) based guidance on the synthesis quality. Our findings demonstrate that
employing guided-motion-diffusion improves the diversity of head-motion with
minimal impact on overall quality, while offering additional editing capabilities.

6 Discussion

Our proposed method excels in synthesizing and editing diverse holistic 3D facial
animations based on speech. Similar to Imitator, for personalization, our method
depends on the appearance and quality of the face tracker. However, through
qualitative results, we demonstrate that our method is able to personalize from
both high-quality motion capture sequence from VOCAset and from monocular
head trackers applied to in-the-wild videos. In this work, we employ a modified
guided motion diffusion [31] to tackle the boundary artifact [7] and sparse-signal
neglect in the head-motion synthesis and editing. In contrast to the head motion,
boundary artifacts are imperceptible for facial motion. For face motion editing,
style-personalization is the critical contribution to enable seamless editing. One
key capability of our method is that it offers control to animators and creators via
keyframes, which can be additionally extended to an explicit natural language
based condition to control the synthesis, which we leave for future works.
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Fig. 8: We investigate the impact of the
classifier-free-guidance scale s [27] using
the ’Lip-sync’ and DivL metrics on the
non-personalized facial motion synthesis
task. Lower guidance values yield anima-
tions with significantly more diverse mo-
tion but inferior lip-sync quality. Con-
versely, higher guidance values result in
high-quality animation with reduced di-
versity. We observe a similar trend in our
perceptual evaluation. We find that the
guidance scale s is an effective tool to in-
crease synthesis diversity beyond all base-
lines with only a small loss of lip-sync ac-
curacy for 0.3 ≤ s ≤ 1.0.

Method Exprs (%) Lip-sync (%)

High-Fidelity (Ours s = 1.0)

1 Ours vs Imitator [53] 65.72 69.47
2 Ours vs Faceformer [18] 73.28 71.43
3 Ours vs FaceDiffuser [48] 67.85 66.71

High-diversity (Ours s = 0.5)

4 Ours vs CodeTalker [58] 53.64 53.80
5 Ours vs FaceDiffuser [48] 40.84 41.55

Holistic synthesis

Method Face Motion (%) Head motion (%)

6 Ours vs Ground Truth 78.57 55.41
7 Ours vs SadTalker [64] 88.13 86.43
8 Ours vs TalkShow [60] 90.77 87.96

Table 4: User study. Our method pro-
duces accurate facial movement with ex-
pressiveness and lip-sync. Even on a ex-
treme high-diversity setup with s = 0.5,
our method outperforms the CodeTalker
and pars sightly in comparison to FaceD-
iffuser, which offers negligible diversity.
In addition, our method produces con-
sistently better holistic 3D facial ani-
mation compared to the baselines. Sim-
ilar to Imitator [53], we evaluate the
person-specific speaking-style similarity
against [53], where 55% of users favored
our method for better style-similarity.

7 Conclusion

With 3DiFACE we present the first method that can both generate and edit
diverse holistic 3D facial animations from speech input. Employing classifier-
free guidance provides us with an effective tool to balance synthesis diversity
and accuracy allowing us to generate animations with unprecedented diversity.
Through personalization, we can extract person-specific speaking styles from
short (∼ 100s) videos which significantly improves performance. Further, we
demonstrate the ability to edit both facial and head motion through keyframes.
We are convinced that these properties make 3DiFACE a powerful tool for con-
tent creators and are excited to see future applications.

8 Additional Evaluation

8.1 Is it possible to unconditionally synthesize and edit motion?

While unconditional motion synthesis has been extensively applied in the motion
synthesis domain [40,52], to the best of our knowledge, its application in 3D facial
animation synthesis remains widely unexplored. The significance of an uncon-
strained facial motion synthesis method cannot be overstated. It holds substan-
tial potential for various applications, such as animating background characters
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in movies and games. Additionally, it enables targeted editing of specific facial
elements—such as eye blinks and eyebrow motions—since these non-verbal facial
expressions often exhibit weak or no correlation with audio features. Moreover,
an unconditional model serves as a valuable motion before downstream tasks, ex-
tending its utility beyond synthesis and editing applications. Our demonstration
of unconditional synthesis and editing are showcased in Figure 9, underscoring
the potential and versatility of such unconstrained models for 3D facial anima-
tion synthesis.

8.2 Is the performance of motion editing consistent across varying
degrees of imputation signal?

We evaluate the performance of motion inbetweening with respect to the input
data. To this end, we preserve 5%, 10%, 20%, and 50% of the starting and ending
frames, and then perform inbetweening for the intermediate motion sequences.
Furthermore, we assess the robustness of the inbetweening by randomly inserting
keyframes at different rates: 1KF/sec, 2KF/sec, and 3KF/sec. For facial motion,
these evaluations are conducted for all sequences of the test subject 024 from the
VOCAset [10], and the resulting metrics are presented in Table 5. Similarly for
head motion, these evaluations are conducted in the HDTF [65] test set. For the
Table 5, it is evident that as the imputation signal strength increases, the syn-
thesis’s fidelity improves while its diversity decreases. This is because there are
fewer frames available for generating varied samples, and the model must align
closely with the frames provided by the imputation signal. This demonstrates
the efficacy and robustness of our method in synthesizing and editing holistic
3D facial animations.

8.3 Why standard diffusion-based head motion-editing fails?

In this section, we analyze standard diffusion fails for the head motion editing
task. An Illustration of a conditional inbetweening sequence across various dif-
fusion steps t is shown in the Figure 10 Observing the left column of the figure,
we notice that the model without our guided motion diffusion primarily concen-
trates on generating a valid sample from the distribution, given the condition.
As a result, it starts to overlook the imputation signal in the low noise regime,
focusing instead on refining the sequence to produce an improved sample from
the distribution. This approach leads to jittery transitions when the imputa-
tion signal is replaced to generate the final inbetweened sample at the end of
the sampling. Throughout its training, the diffusion model was only trained to
generate a valid sample from the distribution, not to align with any part of the
imputation signal.

Observing this, we employed a modified guided motion diffusion to incorpo-
rate guidance signals during training. This adjustment teaches the diffusion to
maintain the imputation signal while still producing a sample from the distribu-
tion. Unlike the initial approach, our guided motion diffusion model utilizes the
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Fig. 9: Qualitative illustration of facial motion inbetweening using our conditional and
unconditional model. In rows 2 and 3, we showcase a sequence synthesized conditionally
and subsequently refined using keyframes. In Row 4 (Uncond. Syn.), we present our
unconditional synthesis results. As observed from the results, our model can uncondi-
tionally synthesize facial animations that appear plausible. Further, in row 5 (Uncond.
Keyframing), we see that our method can unconditionally inbetween facial animation
while preserving the speaking style of the target actor. This progression demonstrates
our model’s capabilities: from conditional synthesis and keyframe-based editing to un-
conditional synthesis and editing, while maintaining the actor’s speaking style.



3DiFACE: Synthesizing and Editing Holistic 3D Facial Animation 17

Method DivL ↑ Lip-Sync ↓ BA ↓ DivH ↓

1 Ours (synthesis) 1.35 1.4 0.338 0.007

2 Ours (Ip 5%) 1.27 1.17 0.341 0.007
3 Ours (Ip 10%) 1.24 1.15 0.352 0.006
4 Ours (Ip 20%) 1.15 1.01 0.358 0.005
5 Ours (Ip 50%) 0.9 0.68 0.403 0.004

6 Ours (1KF/sec) 1.26 1.28 0.321 0.006
7 Ours (2KF/sec) 1.14 1.2 0.347 0.006
8 Ours (3KF/sec) 1.05 1.1 0.365 0.005

Table 5: We quantitatively evaluate our facial motion editing capability on all the test
sequences of the subject 024 in the VOCAset [10] and head motion editing on the test
sequences of the HDTF [65]. To this end, first, we preserve 5%, 10%, 20%, and 50%
of the starting and ending frames, and then perform inbetweening for the intermediate
motion sequences. In addition, we assess the robustness of the inbetweening by ran-
domly inserting keyframes (KF): 1KF/sec, 2KF/sec, and 3KF/sec. From the metrics,
we can see that the synthesis quality increases significantly with the addition of more
keyframes, which is a clear indication that the model matches the ground truth and
produces realistic motion. For animators and artists, this means that they can insert
any number of keyframes they want and have fine-grained control over the motion
synthesis. Note that keyframes could also stem from previously generated motion se-
quences using our method (iterative refinement).

guidance flag and imputation signal to generate samples from the distribution
that accurately reproduce the imputation and align with the condition.

9 Implementation

In the section, we provide more details on the diffusion model, dataset, baselines,
and metrics respectively.

9.1 Preliminaries

Denoising Diffusion Probabilistic Models: Our method is based on the diffusion
framework of Sohl et al. [46], where a training sample x0 gradually transforms
into white noise through the addition of Gaussian noise across T steps. This
transformation is mathematically represented as:

xt ∼ q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), t = 1...T, (5)

where βt is following a predefined variance schedule.
Following recent work [49,52], we train a denoising model θ that can reverse

this noisy diffusion and estimate the original sample x0 from a noised version xt,
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Fig. 10: Illustration of a conditional inbetweening sequence across various diffusion
steps t. Observing the left column of the figure, we notice that the model without
our guided motion diffusion(GMD) primarily concentrates on generating a valid sam-
ple from the distribution, given the condition. As a result, it starts to overlook the
imputation signal in the low noise regime, focusing instead on refining the sequence
to produce an improved sample from the distribution. This approach leads to jittery
transitions when the imputation signal is replaced to generate the final inbetweened
sample at the end of the sampling. In contrast, our guided motion diffusion model uti-
lizes the guidance flag and imputation signal to generate samples from the distribution
that accurately reproduce the imputation and align with the condition.
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guided by: x̂0 = θ(xt, t, C). With θ being the neural network and C representing
additional conditions. The reverse diffusion is achieved through:

q(xt−1|xt) = N (xt−1;
√
ᾱt−1θ(xt, t, C), (1− ᾱt−1)I) ,

where αt := 1− βt and ᾱt :=
∏t

k=1 αk.
To generate new samples, we start from random noise xT and apply itera-

tive denoising until reaching t = 0. We introduce diversity in generation using
Classifier-Free Guidance (CFG) [27] by combining conditional and unconditional
predictions of the network, controlled by a guidance scale s:

θs(xt, t, C) := θ(xt, t, ∅) + s · [θ(xt, t, C)− θ(xt, t, ∅)] ,

adjusting s to balance between diversity and adherence to conditions. Following
[26], the inverse diffusion process is then given through:

q(xt−1|xt) = N (xt−1;
√
ᾱt−1θ(xt, t, C), (1− ᾱt−1)I) , (6)

with αt := 1−βt and ᾱt :=
∏t

k=1 αk. For generating new samples, we randomly
sample xT from a Gaussian distribution and iteratively denoise it until t = 0 is
reached.

To add diversity, we employ Classifier-Free Guidance (CFG) [27] and calcu-
late the output as a weighted sum of the conditional and unconditional predic-
tion:

θs(xt, t, C) := θ(xt, t, ∅) + s · [θ(xt, t, C)− θ(xt, t, ∅)] , (7)

where s is the guidance scale and θ(xt, t, ∅) denotes the unconditional prediction
in which we set the audio conditions to zero. Note that while CFG is typically
used with a guidance scale > 1 to enhance alignment with the condition, we set
it to values < 1 (0.5 unless specified otherwise) to increase diversity.

9.2 Dataset

VOCA: We train our facial motion model on the VOCAset [10] since it provides
high-quality, speech-aligned 3D face scan sequences. It consists of 12 actors (6 fe-
male and 6 male) with 40 sequences each with a length of 3-5 seconds, resampled
at 30fps. Following previous work [53], we use the train/val/test set split of 8, 2, 2
actors. All 40 sequences of the training actors are used during training. However,
for the test and validation, only 20 sequences that do not overlap with the speech
scripts of the training sequences are used. For the style adaption experiment, we
split the 40 sequences of the test actors to 18, 2, 20 for train/val/test sets. The
test sequences of the experiments w/ and w/o style adaptation are identical,
allowing a direct comparison of the scores in the quantitative comparison in the
main paper (Table 2).

In-the-wild dataset: We evaluate person-specific fine-tuning on in-the-wild video
sequences from Imitator [53]. The provided videos are 2 minutes long which we
divide into 60/30/30 seconds for train/val/test respectively. Similar to Imitator,
we employ the MICA tracker [68] to extract the face motion tracking for the
personalization step.



20 B. Thambiraja et al.

HDTF: We train our head-motion generator on the HDTF [65] dataset. The
High-definition Talking Face Dataset (HDTF) is a large in-the-wild audio-visual
dataset for talking face generation. It consists of about 362 different high-resolution
(720P or 1080P) YouTube videos of 15.8 hours in total. Using the download and
processing script provided by the authors, we extracted 352 videos with 246
unique subjects. We additionally crop the video to 30 seconds long and use
them for extracting head-poses using the MICA tracker [68], which provides
head poses as global axis rotation. For our experiments, we split the dataset into
300/20/32 sequences for train/val/test accordingly.

Discussion: In this work, we employ the VOCAset, HDTF, and Imitator’s
in-the-wild dataset to train our method for generating and editing 3D facial an-
imations with head motion. The motivation of generating and editing holistic
3D facial animation made both BIWI [19] and BEAT [34] incompatible for our
study, both BIWI and BEAT are in different model spaces compared to the exist-
ing Face trackers like [12,20,68], which is a key necessity for personalization and
subsequently face motion editing. Such a problem could in theory be addressed
by converting the meshes provided in the dataset to our target FLAME model
space by optimization-based fitting using pre-defined correspondence between
the source and target mesh space. However, for BIWI a combination of weaker
noisy surface reconstruction provided in the dataset and not fully completed
face model makes this fitting challenging and reduces the quality of the fitted
meshes further. Similarly, for BEAT the dependence on ARKit which produces
improper lip-closures and not fully completed face model, reduces the realism
of the reconstructed sequences. As studied in [53], lip-closures are paramount in
conveying realism for the generated sequences.

9.3 Baselines

Holistic 3D motion synthesis: For TalkShow [60], we use the pre-trained model
provided in their official repository and extract the predicted facial and head
motion parameters for our evaluation. For SadTalker [64], we use the pre-trained
model provided in the repository to generate 2D talking face videos and use the
MICA tracker [68] to the face and head motion.

Facial Motion Synthesis: For VOCA [10], Faceformer [18], Imitator [53] and
FaceDiffuser [48], we use the pre-trained model provided in the official repos-
itories. For CodeTalker [58], we adapt the official implementation to add the
functionality of generating diverse motion. Especially, we re-train the audio-
conditioned codebook sampling (stage 02) to randomly sample a code from
the top ’m’ closest codes instead of always using the closest code. This pro-
cess is in spirit close to training the language-based models, where a new diverse
text sequence is generated by sampling the 2nd or 3rd closest language token
over the token with maximum probability. By adapting this method, we en-
sure that CodeTalker can generate diverse samples for a given audio input. For
EMOTE [13], we request the authors to run their method on the VOCAset [10]
and use it for the qualitative and perceptual user study.
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9.4 Training Details

Facial Motion Synthesis: We train our method using ADAM [32] with a learning
rate of 1e-4 for 140K iterations with a batch size of 64. Our diffusion framework
is based on the Gaussian diffusion from Nichol et al. [37], we set the diffusion step
to 500 for our experiments. During training, we randomly crop the sequences to
the length of 30 frames. Our lightweight architecture enables us to train our
model on a single Nvidia Quadro P6000 32GB within 30 hours. The lightweight
architecture is also critical for person-specific style adaptation with a short refer-
ence video. For person-specific speaking style, we use the same training setup as
from the generalized setting, except that we only train it for 30K iterations. For
evaluating the best checkpoint, we fix the guidance scale s = 0.99 and evaluate
all the saved checkpoints on the validation set. Further, we fix the best check-
point and vary the guidance scale from s=0, 0.1 ... to 1.0 with an increment
of 0.1 and find the best guidance factor. From our experiment, we found the
guidance scale of 0.5 balances the lip-synchronization and diversity and provides
the best results.

Head Motion Synthesis Similar to the Facial motion synthesis pipeline, we train
our method using ADAM [32] with a learning rate of 1e-4 for 100K iterations
with a batch size of 64. During training the sequences are randomly cropped
to 300 frames long. For our inbetweening and keyframing-based Guided motion
model training, we randomly sample a mask of arbitrary length for imputation
signal, using which the noisy input is replaced with the ground truth imputation
signal.

9.5 Inference

Our method takes 3.15 sec to produce 1 sec (30 frame) of facial motion and 1.04
sec to produce 1 sec (30 frame) of head motion on a single Nvidia GeForce RTX
3090 24GB, compared to 5.78 sec for the concurrent method FaceDiffuser [48].
In total, our method takes 4.19 sec to produce 1 sec (30 frame) of holistic 3D
facial animation, compared to 6.78 sec for TalkSHOW [60].

9.6 Metrics

Lip-Sync measures the lip synchronization using Dynamic Time Warping to
compute the temporal similarity [53].

Diversity metric introduced by Ren et al. [41] measures the diversity of 3D
motions for the same text input. We employ this metric and propose DivL and
DivH to measure the diversity of lip motion and head motions generated from the
same audio. Given a set of generated 3D facial or head motions with N sequences
generated from the same audio condition. The diversity can be formalized as:

Diversity =
1

L

N−1∑
i=1

N∑
j=i+1

∥mi −mj∥2 (8)
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Where mi represents the i-th motion and L is the total number of possible
combinations in the generated motion set.

Beat alignment (BA) : Similar to DiffPoseTalk [49], we employ a modified beat
alignment BA to measure the synchronization of the head movement beats be-
tween the predicted and ground truth motion, where we calculate the average
temporal distance between beat in predicted head movement its closest ground
truth beat as the Beat Align Score.

Beat Align Score =
1

|Bg|
∑

tg∈Bg

exp

(
−
mintp∈Bp∥tp − tg∥22

2σ2

)
, (9)

Where Bg and Bp record the time of the beats in the ground truth and predicted
head motion respectively, while σ is the normalized parameter which is set to be
3 in our experiment.

Discussion The L2-based vertex error metrics employed in previous studies [18,
53,58] are not apt for our task due to its preference for solutions that are close to
the mean of the dataset, which penalizes the diversity present in our predictions.

9.7 Perceptual Study

We conducted A/B user studies to assess our method’s perceptual performance.
First, we conducted a study to evaluate the holistic motion synthesis based on
the naturalness of the facial and head motion to the input audio. For this, we
sampled 10 sequences from the test set of the HDTF and 10 external audio from
YouTube and synthesized holistic 3D facial motion using our method and the
baselines [60, 64] resulting in a total of 60 A/B comparisons including ground
truth. For extracting the ground truth for the YouTube sequences, similar to
the HDTF dataset processing we utilize the MICA tracker [68] to extract the fa-
cial and head motion. Though the head motion extracted using MICA is smooth
and natural, the tracker might produce jittery or under-articulated facial motion
based on the extremity of head poses in the sequence, this underlines the finding
that 78% of the users prefer the facial motion predicted by our method over the
ground truth (refer to Table 4 User study in the main paper). Second for facial
motion synthesis, we sample 20 sequences combined from the VOCAset test set
and the in-the-wild sequences from Imitator, resulting in 100 A/B comparisons
across five baselines. On Amazon Mechanical Turk(AMT), we divided the A/B
comparisons into 5 HITs (Human Intelligence Task), each with 25 individual
assignments. For each HIT, users select their preference for a method based on
expressiveness and lip-synchronization. Finally, we evaluated the speaking style
preservation of our personalized model in comparison to Imitator. To this end,
the AMT users rated the similarity based on a reference video and the synthe-
sized videos of the VOCA test set. Figure 11 illustrates an example interface in
our user-study.
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Fig. 11: Example of the interface employed for our user-study.

10 Broader Impact

We introduce a method for realistic facial animation synthesis and editing that
matches the speaking style of any given target actor. These animations hold
promise for driving virtual avatars in AR or VR settings, especially, in immer-
sive communication technologies. Yet, it is essential to acknowledge the potential
pitfalls of such advancements, notably in the realm of ’DeepFakes.’ By employ-
ing voice cloning techniques, our method can generate 3D facial animations
that drive digital avatar methods like [3, 22, 23, 28, 67], which could be abused
for identity theft, cyberbullying, and various criminal activities. Advocating for
transparent research practices, we strive to illuminate the risks associated with
technology misuse. Sharing our implementation aims to foster research in digital
multimedia forensics, particularly in developing synthesis methods crucial for
training data utilized in spotting forgeries [44].
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