Hands play a central role in daily life, yet modeling natural hand motions remains underexplored. Existing methods that tackle text-to-hand-motion generation or hand animation captioning rely on studio-captured datasets with limited actions and contexts, making them costly to scale to in-the-wild settings. Further, contemporary models and their training schemes struggle to capture animation fidelity with text–motion alignment.
To address this, we (1) introduce '3D Hands in the Wild' (3D-HIW), a dataset of 32K 3D hand-motion sequences and aligned text, and (2) propose CLUTCH, an LLM-based hand animation system with two critical innovations: (a) SHIFT, a novel VQ-VAE architecture to tokenize hand motion, and (b) a geometric refinement stage to finetune the LLM. To build 3D-HIW, we propose a data annotation pipeline that combines vision-language models (VLMs) and state-of-the-art 3D hand trackers, and apply it to a large corpus of egocentric action videos covering a wide range of scenarios. To fully capture motion in-the-wild, CLUTCH employs SHIFT, a part-modality decomposed VQ-VAE, which improves generalization and reconstruction fidelity. Finally, to improve animation quality, we introduce a geometric refinement stage, where CLUTCH is co-supervised with a reconstruction loss applied directly to decoded hand motion parameters.
Experiments demonstrate state-of-the-art performance on text-to-motion and motion-to-text tasks, establishing the first benchmark for scalable in-the-wild hand motion modelling. Code, data and models will be released.
CLUTCH is an LLM for synthesizing and captioning in-the-wild 3D hand motions. To train this model, we (i) generate an in-the-wild hand motion dataset (Section 3). We (ii) tokenize the hand motion using a novel decomposed VQ-VAE tokenizer (Section 4.1). We (iii) train the LLM to model both text and motion in a unified token space