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Figure 1: Imitator is a novel method for personalized speech-driven 3D facial animation. Given an audio sequence and a
personalized style-embedding as input, we generate person-specific motion sequences with accurate lip closures for bilabial
consonants (’m’,’b’,’p’). The style-embedding of a subject can be computed from a short reference video (e.g., 5s).

Abstract

Speech-driven 3D facial animation has been widely ex-
plored, with applications in gaming, character animation,
virtual reality, and telepresence systems. State-of-the-art
methods deform the face topology of the target actor to sync
the input audio without considering the identity-specific
speaking style and facial idiosyncrasies, thus, resulting
in unrealistic and inaccurate lip movements. To address
this, we present Imitator, a speech-driven facial expres-
sion synthesis method, which learns identity-specific de-
tails from a short input video and produces novel facial
expressions matching the identity-specific speaking style
and facial idiosyncrasies of the target actor. Specifically,
we train a style-agnostic transformer on a large facial ex-
pression dataset which we use as a prior for audio-driven
facial expressions. We utilize this prior to optimize for
identity-specific speaking style based on a short reference

video. To train the prior, we introduce a novel loss function
based on detected bilabial consonants to ensure plausible
lip closures and consequently improve the realism of the
generated expressions. Through detailed experiments and
user studies, we show that our approach improves Lip-Sync
by 49% and produces expressive facial animations from
input audio while preserving the actor’s speaking style.
Project page: https://balamuruganthambiraja.
github.io/Imitator

1. Introduction

3D digital humans raised a lot of attention in the past
few years as they aim to replicate the appearance and mo-
tion of real humans for immersive applications, like telep-
resence in AR or VR, character animation and creation
for entertainment (movies and games), and virtual mirrors
for e-commerce. Especially, with the introduction of neu-
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ral rendering [25, 27], we see immense progress in the
photo-realistic synthesis of such digital doubles [36, 11, 19].
These avatars can be controlled via visual tracking to mir-
ror the facial expressions of a real human. However, for a
series of applications, we need to control the facial avatars
with text or audio inputs. For example, AI-driven digital as-
sistants rely on motion synthesis instead of motion cloning.
Even telepresence applications might need to work with au-
dio inputs only, when the face of the person is occluded
or cannot be tracked, since a face capture device is not
available. To this end, we analyze motion synthesis for fa-
cial animations from audio inputs; note that text-to-speech
approaches can be used to generate such audio. Humans
are generally sensitive towards faces, especially facial mo-
tions, as they are crucial for communication (e.g., micro-
expressions). Without full expressiveness and proper lip
closures, the generated animation will be perceived as un-
natural and implausible. Especially if the person is known,
the animations must match the subject’s idiosyncrasies.

Recent methods for speech-driven 3D facial anima-
tion [16, 5, 20, 10] are data-driven. They are trained on
high-quality motion capture data and leverage pretrained
speech models [13, 21] to extract an intermediate audio rep-
resentation. We can classify these data-driven methods into
two categories, generalized [5, 20, 10] and personalized an-
imation generation methods [16]. In contrast to those ap-
proaches, we aim at a personalized 3D facial animation syn-
thesis that can adapt to a new user while only relying on in-
put RGB videos captured with commodity cameras. Specif-
ically, we propose a transformer-based auto-regressive mo-
tion synthesis method that predicts a generalized motion
representation. This intermediate representation is decoded
by a motion decoder which is adaptable to new users. A
speaker embedding is adjusted for a new user, and a new
motion basis for the motion decoder is computed.

Our method is trained on the VOCA dataset [5] and can
be applied to new subjects captured in a short monocular
RGB video. As lip closures are of paramount importance
for bilabial consonants (’m’,’b’,’p’), we introduce a novel
loss based on the detection of bilabials to ensure that the
lips are closed properly. We take inspiration from the lo-
comotion synthesis field [18, 14], where similar losses are
used to enforce foot contact with the ground and transfer it
to our scenario of physically plausible lip motions.

In a series of experiments and ablation studies, we
demonstrate that our method is able to synthesize facial ex-
pressions that match the target subject’s motions in terms of
style and expressiveness. Our method outperforms state-of-
the-art methods in the metrical evaluation and user study.
Please refer to our suppl. video for a detailed qualitative
comparison. In the user study, we confirm that personalized
facial expressions are important for the perceived realism.

The contributions of our work Imitator are as follows:

• We explore the speaking style-adaption problem and
show that personalization of speaking-style is critical
for improving realism and expressiveness in 3D facial
animation synthesis,

• we, therefore, propose a novel light-weight speaking
style-adaption approach that allows for efficient style-
adaption to new users from a short reference video
by disentangling generalized viseme generation and
identity-specific motion decoding,

• and introduce a novel lip contact loss formulation for
improved lip closures based on physiological cues of
bilabial consonants (’m’,’b’,’p’) which also improves
other state-of-the-art motion synthesis methods.

2. Related Work

Our work focuses on speech-driven 3D facial animation
related to talking head methods that create photo-realistic
video sequences from audio inputs.

Talking Head Videos: Several prior works on speech-
driven generation focus on the synthesis of 2D talking head
videos. Suwajanakorn et al. [23] train an LSTM network
on 19h video material of Obama to predict his identity-
specific 2D lip landmarks from speech inputs, which is then
used for image generation. Vougioukas et al. [30] propose
a method to generate facial animation from a single RGB
image by leveraging a temporal generative adversarial net-
work. Chung et al. [4] introduce a real-time approach to
generate an RGB video of a talking face by directly map-
ping the audio input to the video output space. This method
can re-dub a new target identity not seen during training.
Instead of performing direct mapping, Zhou et al. [37] dis-
entangles the speech information in terms of speaker iden-
tity and content, allowing speech-driven generation that can
be applied to various types of realistic and hand-drawn
head portraits. A series of work [26, 22, 35, 34] uses
an intermediate 3D Morphable Model (3DMM) [2, 8] to
guide the 2D neural rendering of talking heads from audio.
Wang et al. [31] extend this work also to model the head
movements of the speaker. Lipsync3d [17] proposes data-
efficient learning of personalized talking heads focusing on
pose and lighting normalization. Based on dynamic neural
radiance fields [11], Ad-nerf [12] and DFA-NeRF [33] learn
personalized talking head models that can be rendered un-
der novel views, while being controlled by audio inputs. In
contrast to these methods, our work focuses on predicting
3D facial animations from speech that can be used to drive
3D digital avatars without requiring retraining of the entire
model to capture the identity-specific motion style.

Speech-Driven 3D Facial Animation: Speech-driven 3d
facial animation is a vivid field of research. Earlier meth-



Figure 2: Our architecture takes audio as input which is encoded by Wav2Vec2.0 [1]. This audio embedding â1:T is fed into
an auto-regressive viseme decoder which generates a motion feature v̂1:T . The style-adaptable motion decoder maps these
motion features to identity-specific facial expressions ŷ1:T in terms of vertex displacements w.r.t. a template mesh.

ods [6, 9, 15, 7, 29] focus on animating a predefined fa-
cial rig using procedural rules. HMM-based models gener-
ate visemes from input text or audio, and the facial anima-
tions are generated using viseme-dependent co-articulation
models [7, 6] or by blending facial templates [15]. With
recent advances in machine learning, data-driven meth-
ods [3, 24, 26, 16, 5, 20, 10] have demonstrated their ca-
pability to learn viseme patterns from data. These meth-
ods are based on pretrained speech models [13, 21, 1] to
generate an abstract and generalized representation of the
input audio, which is then interpreted by a CNN or auto-
regressive model to map to either a 3DMM space or directly
to 3D meshes. Karras et al.[16] learn a 3D facial animation
model from 3-5 minutes of high-quality actor specific 3D
data.VOCA [5] is trained on 3D data of multiple subjects
and can animate the corresponding set of identities from in-
put audio by providing a one-hot encoding during inference
that indicates the subject. MeshTalk [20] is a generalized
method that learns a categorical representation for facial
expressions and auto-regressively samples from this cate-
gorical space to animate a given 3D facial template mesh
of a subject from audio inputs. FaceFormer [10] uses a
pretrained Wav2Vec [1] audio representation and applies a
transformer-based decoder to regress displacements on top
of a template mesh. Like VOCA, FaceFormer provides a
speaker identification code to the decoder, allowing one to
choose from the training set talking styles. In contrast, we
aim at a method that can adapt to new users, capturing their
talking style and expressiveness.

3. Method

Our goal is to model identity-specific speaking style and
the facial idiosyncrasies of an actor, to generate 3D facial
animations of the subject from novel audio inputs. As in-

put, we assume a short video sequence of the subject which
we leverage to compute the identity-specific speaking style.
To enable fast adaptation to novel users without significant
training sequences, we learn a generalized style-agnostic
transformer. This transformer provides generic motion fea-
tures from audio inputs that are interpretable by a style-
aware motion decoder. The motion decoder is pre-trained
and adaptable to new users via speaking style optimization
and refinement of the motion basis. To further improve syn-
thesis results, we introduce a novel lip contact loss based on
physiological cues of bilabial consonants [7].

3.1. Model Architecture

Our architecture consists of three main components (see
Fig. 2): an audio encoder, a generalized auto-regressive
viseme decoder, and an adaptable motion decoder.
Audio Encoder: Following state-of-the-art motion synthe-
sis models [5, 10], we use a generalized speech model to en-
code the audio inputs A. Specifically, we leverage Wav2Vec
2.0 [1]. The original Wav2Vec is based on a CNN architec-
ture designed to produce a meaningful latent representation
of human speech. It is trained in a self-supervised and semi-
supervised manner to predict the immediate future values of
the current input speech by using a contrastive loss, allow-
ing the model to learn from a large amount of unlabeled
data. Wav2Vec 2.0 extends this idea by quantizing the la-
tent representation and incorporating a Transformer-based
architecture [28]. We resample the Wav2Vec 2.0 output via
linear interpolation to match the sampling frequency of the
motion (30fps for VOCAset, with 16kHz audio), resulting
in a contextual representation {â}Tt=1 for T motion frames.
Auto-regressive Viseme Decoder: The viseme decoder
Fv takes the contextual representation of the audio sequence
as input and produces style-agnostic viseme features v̂t in



an auto-regressive manner. These viseme features describe
how the lip should deform given the context audio and the
previous viseme features. In contrast to Faceformer[10], we
propose to use of a classical transformer architecture [28]
as viseme decoder, which learns the mapping from audio-
features {â}Tt=1 to identity agnostic viseme features {v̂}Tt=1.
The autoregressive viseme decoder is defined as:

v̂t = Fv(✓v; v̂1:t�1, â1:T ), (1)

where ✓v are the learnable parameters of the transformer.
In contrast to the traditional neural machine translation

(NMT) architectures that produce discrete text, our output
representation is a continuous vector. NMT models use
a start and end token to indicate the beginning and end
of the sequence. During inference, the NMT model auto-
regressively generates tokens until the end token is gener-
ated. Similarly, we use a start token to indicate the begin-
ning of the sequences. However, since the sequence length
T is given by the length of the audio input, we do not use
an end token. We inject temporal information into the se-
quences by adding sinusoidal-encoded time PE(t) [28] to
the viseme feature in the sequence:

ĥt = v̂t + PE(t). (2)

Given the sequence of positional encoded inputs ĥt, we use
multi-head self-attention which generates the context rep-
resentation of the inputs by weighting the inputs based on
their relevance. These context representations are used as
input to a cross-modal multi-head attention block which
also takes the audio features â1:T from the audio encoder
as input. A final feed-forward layer maps the output of
this audio-motion attention layer to the viseme embedding
v̂t. In contrast to Faceformer [10], which feeds encoded
face motions ŷt to the transformer, we work with identity-
agnostic viseme features which are independently decoded
by the motion decoder. We found that feeding face motions
ŷt via an input embedding layer to the transformer contains
identity-specific information, which we try to avoid since
we aim for a generalized viseme decoder that is disentan-
gled from identity-specific motion. In addition, using a gen-
eral start token instead of the identity code [10] as the start
token reduces the identity bias further. Note that disentan-
gling the identity-specific information from the viseme de-
coder improves the motion optimization in the style adap-
tion stage of the pipeline ( Sec. 3.3), as gradients do not need
to be propagated through the auto-regressive transformer.
Motion Decoder: We aim to generate identity-specific 3D
facial animations ŷ1:T from the style-agnostic viseme fea-
tures v̂1:T and a identity-specific style embedding Ŝi. Our
motion decoder consists of two components, a style embed-
ding layer and a motion synthesis block. For the training
of the style-agnostic transformer and for pre-training the

motion decoder, we assume to have a one-hot encoding
of the identities of the training set. The style embedding
layer takes this identity information as input and produces
the style embedding Ŝi, which encodes the identity-specific
motion. The style embedding is added to the viseme fea-
tures v̂1:T and fed into the motion synthesis block. The mo-
tion synthesis block consists of non-linear layers which map
the style-aware viseme features to the motion space defined
by a linear deformation basis. During training, the defor-
mation basis is learned across all identities in the dataset.
The deformation basis is fine-tuned for style adaptation to
out-of-training identities (see Sec. 3.3). The final mesh out-
puts ŷ1:T are computed by adding the estimated per-vertex
deformation to the template mesh of the subject.

3.2. Training

Similar to Faceformer [10], we use an autoregressive
training scheme instead of teacher-forcing to train our
model on the VOCAset [5]. Given ground truth 3D facial
animations of VOCAset, we define the following loss:

Ltotal = �MSE · LMSE + �vel · Lvel + �lip · Llip, (3)

where LMSE defines a reconstruction loss of the vertices,
Lvel defines a velocity loss, and Llip measures lip contact.
The weights are �MSE = 1.0, �vel = 10.0, and �lip = 5.0.
Reconstruction Loss: The reconstruction loss LMSE is:

LMSE =
NX

n=1

TnX

t=1

||yt,n � ŷt,n||2, (4)

where yt,n is the ground truth mesh at time t in sequence n
(of N total sequences) and ŷt,n is the prediction.
Velocity Loss: Our motion decoder takes independent
viseme features as input to produce facial expressions. To
improve temporal consistency in the prediction, we intro-
duce a velocity loss Lvel similar to [5]:

Lvel =
NX

n=1

TnX

t=2

||(yt,n � yt�1,n)� (ŷt,n � ŷt�1,n)||2. (5)

Lip Contact Loss: Training with LMSE guides the model
to learn an averaged facial expression, thus resulting in im-
proper lip closures. To this end, we introduce a novel lip
contact loss for bilabial consonants (’m’,’b’,’p’). Specif-
ically, we automatically annotate the VOCAset to extract
the occurrences of these consonants; see Sec. 4. Using this
data, we define the following lip loss:

Llip =
NX

n=1

TnX

t=1

wt,n||yt,n � ŷt,n||2, (6)

where wt,n weights the prediction of frame t of video n
according to the annotation of the bilabial consonants using



Figure 3: Automatic labeling of the bilabial consonants
(’m’,’b’ and ’p’) and their corresponding lip closures in a se-
quence of VOCAset [5]. We useTorch Audio [32] to align
the transcript to the audio, and extract the timestamps for
the bilabial consonants. To detect the actual lip closures,
we search for local-minima on the Lip distance curves (red)
in a window before the detected consonant. The lip loss
weights wt,n are set to fixed values of a Gaussian function.

a Gaussian weighting. Specifically, wt,n is (0, 1] for frames
with such consonants and zero otherwise. Note that for such
frames, the target yt,n represents a face with a closed mouth;
thus, improving lip closures at ’m’,’b’ and ’p’s (see Sec. 5).

3.3. Style Adaptation

Given a short video of a new subject, we track the face
ỹ1:T using MICA [38]. Based on this reference data, we
first optimize for the speaker style-embedding Ŝ and then
jointly refine the linear deformation basis using the LMSE

and Lvel loss. In our experiments, we found that this two-
stage adaptation is essential for generalization to new audio
inputs as it reuses the pretrained information of the motion
decoder. As an initialization of the style embedding, we
use a speaking style of the training set. We precompute
all viseme features v̂1:T once, and optimize the speaking
style to reproduce the tracked faces ỹ1:T . We then refine
the linear motion basis of the decoder to match the identity-
specific deformations (e.g., asymmetric lip motions). Please
refer to the supplemental material for a detailed study of the
impact of different stages in the style-adaption process.

4. Dataset

We train our method based on VOCAset [5], which con-
sists of 12 actors (6 female and 6 male) with 40 sequences
each with a length of 3 � 5 seconds. The dataset comes
with a train/test set split which we use in our experiments.
The test set contains 2 actors. The dataset offers audio and
high-quality 3D face reconstructions per frame (60fps). For
our experiment, we sample the 3D face reconstructions at
30fps. We train the auto-regressive transformer on this data
using the loss from Eq. (3). For the lip contact loss Llip, we
automatically compute the labels as described below.

Automatic Lip Closure Labeling: For the VOCAset, the
transcript is available. We use wav2vec-based forced align-
ment of Torch Audio [32] to align the transcript with the
audio track. As the lip closure is formed before we hear
the bilabial consonants, we search for the lip closure in the
tracked face geometry before the time-stamp of the occur-
rence of the consonants in the script. We show this pro-
cess for a single sequence in Fig. 3. The lip closure is de-
tected by lip distance, i.e., the frame with minimal lip dis-
tance in a short time window before the detected consonant
is assumed to be the lip closure. In addition, we also ex-
perimented with using lip distance alone for detecting the
lip closures. However, this additionally detects the speech
pauses and requires thresholding of actor-specific lip dis-
tances which we found unstable (e.g., noisy tracking).

Style Adaptation: To adapt the motion decoder to a new
subject, we assume to have a monocular video of about 2
min. which we divide into train/validation/test sequences.

5. Results

To validate our method, we conducted a series of qual-
itative and quantitative evaluations, including a user study
and ablation studies. For evaluation on the test set of VO-
CAset [5], we randomly sample 4 sequences from the test
subjects’ train set (each ⇠ 5s long) and learn the speaking-
style and facial idiosyncrasies of the subject via style adap-
tation. We compare our method to the state-of-the-art meth-
ods VOCA [5], Faceformer [10], and MeshTalk [20]. We
base our experiments on the original implementations of
the authors. However, we found that MeshTalk cannot
be trained on the comparably small VOCAset. Thus, we
qualitatively compare against MeshTalk with their provided
model trained on a large-scale proprietary dataset with 200
subjects and 40 sequences for each. Note that the pretrained
MeshTalk model is not compatible with the FLAME topol-
ogy; thus, we cannot evaluate MeshTalk on novel identities.

In addition to the experiments on the VOCAset, we show
results on external RGB sequences (see suppl. video).

Quantitative Evaluation: To quantitatively evaluate our
method, we use the test set of VOCAset [5].We evaluate



Figure 4: Qualitative comparison to VOCA [5], Faceformer [10], and MeshTalk [20]. Note that MeshTalk is performed with a
different identity since we use their pretrained model, which cannot be trained on the VOCAset. As we see in the highlighted
regions, the geometry of the generated sequences without the identity-specific style has muted and inaccurate lip animations.

Method Lip-Sync # Lip-max # Llip
2 # Lface

2 #
1 VOCA [5] 5.1 6.97 0.2 0.92
2 FF [10] 2.86 5.5 0.16 0.83
3 Ours w/ 4 seq (⇠ 20s) 1.44 3.85 0.1 0.89
4 Ours w/ 10 seq (⇠ 50s) 1.43 3.55 0.09 0.76

Table 1: Quantitative results on the VOCAset [5]. Our
method outperforms the baselines significantly, especially
Lip-Sync by 49% and Lip-max by 36%.

the performance of our method based on a mean L2 vertex
distance for the entire mesh Lface

2 and the lip region Llip
2 .

Following MeshTalk [20], we also compute the Lip-max,
which measures the mean of the maximal per-frame lip dis-
tances. In order to evaluate synchronization (Lip-Sync), we
use Dynamic Time Warping to compute the temporal simi-

larity between the produced and reference meshes on the lip
region. Since VOCA and Faceformer do not adapt to new
user talking styles, we select the talking style from their
training with the best quantitative metrics. Note that the
pretrained MeshTalk model is not applicable to this eval-
uation due to the identity mismatch. As can be seen in
Tab. 1, our method achieves the best performance on all
the lip metrics, confirming our qualitative results. However,
when style adaption is performed on 4 sequences (⇠ 20s),
our method has a higher error on the entire face compared to
Faceformer [10]. Our prediction on the entire face gets bet-
ter with slightly more data (⇠ 50s) and also outperforms the
baselines (Tab. 1 row 4). This is because the model learns
to produce upper face motion, which can also be seen in
Fig. 7, where we visualize the per-vertex mean error that
corresponds to the evaluation. Depending on the reference



Figure 5: Qualitative ablation comparison. At first, we show that our complete method with style and Llip loss is able to
generate personalized facial animation with expressive motion and accurate lip closures. Replacing the optimized identity-
specific style with a random style from the training set results in generic and muted facial animation indicating the importance
of style-adaption. As highlighted in the per-vertex error maps (magenta), the generated expression is not similar to the target
actor. Especially the facial deformations are missing identity-specific details. Removing Llip from the training objective
results in improper lip closures (red) and reduces the perceived realism.



Figure 6: Comparison of the methods displaying the mean
L2 vertex distance error on VOCA test set.

Method Expressiveness (%) Realism/Lip-sync (%)

Ours vs VOCA [5] 86.48 76.92
Ours vs Faceformer [10] 81.89 75.46
Ours vs Ground truth 20.28 42.30

Table 2: Perceptual A/B user study conducted on the test
set of VOCAset [5] with 56 participants. In comparison to
VOCA [5] and Faceformer [10], our method is preferred.

data, we introduce an error in the upper face region (which
has only a weak correlation with audio). I.e., the model
picks up spurious correlations between audio and the up-
per face motion when only a short reference video is given
(20s) and resolves that when having a longer video (e.g., 10
sequences of ⇠ 5s each). As the upper face motions look
natural and the overall face error is negligible, it does not
negatively influence the perceived quality of the user study.
Qualitative Evaluation: We conducted a qualitative evalu-
ation on sequences not part of VOCAset (see suppl. video).
In Fig. 4, we show a series of frames from those sequences
with the corresponding words. As we can see, our method
is able to adapt to the speaking style of the respective
subject. VOCA [5] and Faceformer [10] miss identity-
specific deformations and are not as expressive as our re-
sults. MeshTalk [20], which uses an identity of the pre-
trained model also shows dampened expressivity.

Method Faithfullness (%) Style similarity (%)

Ours vs VOCA [5] 81.98 71.17
Ours vs Faceformer [10] 84.68 76.58

Table 3: A/B user study (37 participants) conducted on in-
the-wild actor’s to evaluate speaking-style similarity and
faithfullness with reference to a target actor.

Perceptual Evaluation: We conducted an A/B user study
on the test set of VOCAset to quantify the quality of our
method’s generated results (see Tab. 2). We randomly sam-
ple 10 sequences of the test subjects and run our method,
VOCA, and Faceformer. For VOCA and Faceformer, which
do not adapt to the style of a new user, we use the talking

Method Sty LipCt Lip-Sync # Lip-max # Llip
2 # Lface

2 #
1 VOCA [5] 7 7 5.1 6.97 0.2 0.92
2 FF [10] 7 7 2.86 5.5 0.16 0.83
3 Ours 7 7 1.95 4.8 0.12 0.85

4 VOCA [5] X 7 3.15 5.36 0.14 0.86
5 FF [10] X 7 1.67 4.1 0.1 0.95
6 Ours X 7 1.63 3.94 0.1 0.89

7 VOCA [5] X X 2.07 4.83 0.13 0.79
8 FF [10] X X 1.71 3.94 0.1 0.89
9 Ours X X 1.44 3.85 0.1 0.89

10 Ours 1 seq X X 1.48 3.96 0.1 0.9
11 Ours 10 seq X X 1.43 3.55 0.09 0.76
12 Ours 20 seq X X 1.35 3.43 0.09 0.69

Table 4: Ablation studies of our method and its components
on the VOCAset [5]. Labels Sty and LipCt indicate the use
the Style-adaption and Lip contact loss. Note, style adapta-
tion is done on 4 sequences, except for experiments 10-12.

style of the training Subject 137, which provided the best
quantitative results. We use 20 videos per method result-
ing in 60 A/B comparisons. For every A/B test, we ask the
user to choose the best method based on realism and ex-
pressiveness, following the protocol of Faceformer [10]. In
Tab. 2, we show the result of this study in which 56 people
participated. We observe that our method consistently out-
performs VOCA and Faceformer, achieving similar realism
and lip-sync as ground truth. Note that the users in the per-
ceptual study have not seen the original talking style of the
actors before. However, the results show that our personal-
ized synthesis leads to more realistic animations.

Additionally, we conducted an A/B user study to eval-
uate the faithfullness and style similarity for 4 in-the-wild
actor’s, see Tab. 3. In this study, we additionally show an
original video as reference. The study confirms, that our
method best captures the person-specific style and facial id-
iosyncrasies compared to the baselines.

Ablation Studies: Adding style adaptation improves the
performance in the lip region (Tab. 4 row 1-3 vs 4-6). Even
when using a single reference video for style adaptation
(5s) (Tab. 4 row 10), our results show significantly better
lip scores than the baselines. From Fig. 5, we also ob-
serve that the generated motion better matches the identity-
specific deformations and mouth shapes and improves the
expressiveness. However as mentioned in Sec. 5, we notice
a slight increase on the entire face, when style-adaption is
performed on fewer sequences. With slightly more data, the
error on the entire face improves (Tab. 4 row 9,10 vs 11,12).

Adding lip contact loss improves the metrics Lip-Sync
and Lip-max (Tab. 4 row 6 vs 9). Qualitatively, the loss
improves the lip closures for the bilabial consonants, thus,
improving the perceived realism, as can be seen in Fig. 5
(Ours w/ Sty + Lip vs Ours w/ Sty + No Lip).

In Tab. 4 (row 7,8), we observe that even if Faceformer
(FF) and VOCA are style-optimized with our proposed



technique, our architecture shows better performance on all
metrics. In addition, our architecture only requires 30min
for style adaptation on the VOCA test set using a Quadro
RTX 6000, while VOCA and Faceformer take 40min and
6hrs respectively. Note that our method also beats the base-
lines in the generalized case w.r.t. lip sync (row 1-3).

Sensitivity Study: Similar to VOCA [5], we conducted
a sensitivity experiment by adding white noise to audio
with negative gain of 36db (low), 24db (medium), 12db
(high) (see Fig. 7). In comparison to the baselines Face-
Former [10] and VOCA [5], our method produces high
quality facial animations, even with noisy input audio.

Figure 7: Audio noise sensitivity study in terms of mean L2
distances, evaluated on VOCAset test subjects by adding
white noise to the input audio with negative gain of 36db,
24db and 12db.

Style Code Initialization: For personalized speech-
driven 3D facial animations, we apply style-adaptation of
our generalized model. Specifically, we fine-tune the de-
formation basis and the style block for every new target.
The initialization of the style codes could be done man-
ually or by a heuristic to have a joint single-stage opti-
mization, instead of our proposed two-stage optimization
process which works fully automatic. To analyze this, we
run style-adaptation multiple times using both methods (the
proposed 2 Stg. optim and the Joint optim) with different
style code initializations. We report the mean and std. devi-
ation of this experiment for the test subject ”138” in Tab. 5
[Row 1-2]. In contrast to the joint optimization, our pro-
posed method gives the best quantitative performance and
converges to similar solution irrespective of the initializa-
tion which can be seen by the low std. deviation.

Training Data: Additionally, we evaluate the robustness
of style-adaptation w.r.t. the input data. Specifically, we
perform style-adaptation on 5 different training sets (á 4
seq.) of the test subject 138 (see Tab. 5 [Row 3]). We can
observe that irrespective of the sequences used for style-
adaptation, our method produces stable performance which

is highlighted by a low std. deviation. However, we ob-
served that the training data should contain all visemes, par-
ticularly viseme’s corresponding to ’m’, ’b’ and ’p’s. If
a specific viseme is missing in our train set, our method
will not be able to produce it faithfully (e.g., no fully closed
mouth for an ’m’, if ’m’ is missing).

Method Lip-Sync # Lip-max # Llip
2 # Lface

2 #
1 Joint Optim 1.97 (0.20) 5.00 (0.14) 0.13 (0.0024) 0.99 (0.012)

2 2 Stg. Optim 1.68 (0.04) 4.16 (0.01) 0.11 (0.0004) 0.82 (0.002)

3 Training Data Ablation 1.61 (0.08) 4.08 (0.04) 0.11 (0.0006) 0.83 (0.002)

Table 5: Ablation on style embedding initialization for joint
and 2-stage style adaptation [Row 1-2], and impact of train-
ing data for style adaptation [Row 3]. Std. dev. in brackets.

Limitations: Our evaluation shows that our proposed
method outperforms state-of-the-art methods in perceived
expressiveness and realism. However, the appearance, ex-
pressiveness, and facial details of new subjects depend on
the face tracking quality. From the qualitative results, we
see that our method is robust and able to learn style-adaption
from both motion capture data (VOCA test set) and 3DMM
tracked meshes. We conclude that if face tracking is im-
proved, our method will also predict better facial animation.
Similar to Faceformer [10], we built upon Wav2Vec 2.0,
thus, the inference is acausal. A window-based approach
similar to [5, 20] could be explored in future work.

6. Conclusion

We presented Imitator, a novel approach for personal-
ized speech-driven 3D facial animation. Based on a short
reference video clip of a subject, a personalized motion de-
coder driven by a generalized auto-regressive transformer
that maps audio to intermediate viseme features is learned.
The conducted studies show that personalized facial anima-
tions are essential for the perceived realism of a generated
sequence. Our novel loss formulation for accurate lip clo-
sures of bilabial consonants improves the perceived realism.
Our proposed contributions namely Style-adaption and Lip
contact loss improves our method as well as the baselines.
In summary, we believe that personalized facial animations
are a stepping stone towards audio-driven digital doubles.
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In this supplemental document, we analyze the style
adaptation with respect to the length of the reference video
(see Sec. 1) and show an ablation study on 2-stage style-
adaptation (Sec. 2), provide additional details of the pro-
posed architecture (see Sec. 3), and discuss ethical consid-
erations in Sec. 4.

1. Impact of Data to Style-Adaptation:

To analyze the impact of data on the style adaptation pro-
cess, we randomly sample (1, 4, 10, 20) sequences from the
train set of the VOCA test subjects and perform our style
adaption. Each sequence contains about 3 � 5 seconds of
data. In Tab. 1, we observe that the performance on the
quantitative metrics increase with the number of reference
sequences. As mentioned in the main paper, even an adapta-
tion based on a single sequence results in a significantly bet-
ter animation in comparison to the baseline methods. This
highlights the impact of style on the generated animations.

Fig. 1 illustrates the lip distance curve for one test se-
quence used in this study. We observe that the lip distance
with more reference data better fits the ground truth curve.

No. Seq. Lip-Sync # Lip-max # Llip
2 # Lface

2 #
1 1.48 3.96 0.1 0.9
4 1.44 3.85 0.1 0.89

10 1.43 3.55 0.09 0.76
20 1.35 3.43 0.09 0.69

Table 1: Ablation of the style adaptation w.r.t. the amount
of reference sequences used. With an increasing number
of data, the quantitative metrics improve. Each sequence is
3� 5s long.

2. Ablation study on 2 stage Style-Adaptation:

Our proposed style adaptation has two stages as ex-
plained in the main paper Sec. 3.3. In the first step, we

Method Lip-Sync # Lip-max # Llip
2 # Lface

2 #
Initial Style 1.95 4.8 0.12 0.85
Style code optimization 1.81 4.53 0.12 0.79
Motion basis refinement 1.44 3.85 0.1 0.89

Table 2: Quantitative analysis of the different stages in our
style-adaption pipeline. Note the ablation study is con-
ducted on our proposed architecture and style-adaption is
performed on 4 sequences.

optimize for the style code and then we refine the motion
basis and style code together. In Fig. 2, we show an exam-
ple of the style adaptation by evaluating the lip distances
throughout a sequence with a motion decoder at initializa-
tion, with optimized style code, and with a refined motion
basis. While the lip distance with the generalized motion
decoder is considerable, it gets significantly improved by
the consecutive steps of style adaptation. After style code
optimization, we observe that the amplitude and frequency
of the lip distance curves start resembling the ground truth.
From Tab. 2, we observe an increase in quantitative per-
formance on Lip-Sync and Lip-max metrics. Refining the
motion basis further improves the lip distance, and it is able
to capture facial idiosyncrasies, like asymmetrical lip de-
formations. Quantitatively, it improves the metrics in the
lip region significantly. However, as discussed in the main
paper Sec. 5, we see a slight increase in the overall face
error, when style-adaption is performed on fewer sequences
(⇠ 20s). This also gets improved when slightly more data
(⇠ 50s) is provided.

3. Architecture Details

3.1. Audio Encoder:

Similar to Faceformer[3], our audio encoder is built upon
the Wav2Vec 2.0 [1] architecture to extract temporal audio
features. These audio features are fed into a linear interpo-

1



Figure 1: With an increasing number of reference data samples for style adaptation, the lip distance throughout a test sequence
of VOCAset is approaching the ground truth lip distance curve.

Figure 2: Analysis of style adaptation in terms of lip distance on a test sequence of the VOCAset [2] (reference in red).
Starting from an initial talking style from the training set (blue), we consecutively adapt the style code (green) and the motion
basis of the motion decoder (purple).

lation layer to convert the audio frequency to the motion fre-
quency. The interpolated outputs are then fed into 12 iden-
tical transformer encoder layers with 12 attention heads and
an output dimension of 768. A final linear projection layer
converts the audio features from the 768-dimension features
to a 64-dimensional phoneme representation.

3.2. Auto-regressive Viseme Decoder:

Our auto-regressive viseme decoder is built on top of
traditional transformer decoder layers [5]. We use a zero
vector of 64-dimension as a start token to indicate the start
of sequence synthesis. We first add a positional encoding
of 64-dimension to the input feature and fed it to decoder

layers in the viseme decoder. For self-attention and cross-
modal multi-head attention, we use 4 heads of dimension
64. Our feed forward layer dimension is 128.

Multi-Head Self-Attention: Given a sequence of posi-
tional encoded inputs ĥt, we use multi-head self-attention
(self-MHA), which generates the context representation of
the inputs by weighting the inputs based on their relevance.
The Scaled Dot-Product attention function can be defined
as mapping a query and a set of key-value pairs to an out-
put, where queries, keys, values and outputs are vectors [5].
The output is the weighted sum of the values; the weight is
computed by a compatibility function of a query with the



corresponding key. The attention can be formulated as:

Attention(Q,K, V ) = �(
QK

T

p
dk

)V, (1)

where Q,K, V are the learned Queries, Keys and Values,
�(·) denotes the softmax activation function, and dk is the
dimension of the keys. Instead of using a single atten-
tion mechanism and generating one context representation,
MHA uses multiple self-attention heads to jointly generate
multiple context representations and attend to the informa-
tion in the different context representations at different po-
sitions. MHA is formulated as follows:
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Audio-Motion Multi-Head Attention The Audio-Motion
Multi-Head attention aims to map the context representa-
tions from the audio encoder to the viseme representations
by learning the alignment between the audio and style-
agnostic viseme features. The decoder queries all the exist-
ing viseme features with the encoded audio features, which
carry both the positional information and the contextual in-
formation, thus, resulting in audio context-injected viseme
features. Similar to Faceformer [3], we add an alignment
bias along the diagonal to the query-key attention score to
add more weight to the current time audio features. The
alignment bias BA(1  i  t, 1  j  KT ) is:

B
A(i, j) =

(
0 if (i = j),

�1 otherwise.
(3)

The modified Audio-Motion Attention is represented as:

Attention(Qv
,K

a
, V

a
, B

A) = �(
Q

v(Ka)Tp
dk

+B
A)V a

,

(4)
where Qv are the learned queries from viseme features, Ka

the keys and V
a the values from the audio features, �(·) is

the softmax activation function, and dk is the dimension of
the keys.

3.3. Motion Decoder:

The motion decoder aims to generate 3D facial anima-
tions ŷ1:T from the style-agnostic viseme features v̂1:T and
a style embedding Ŝi. Specifically, our motion decoder
consists of two components, a style embedding layer and
a motion synthesis block. The style linear layer takes a one-
hot encoder of 8-dimension and produce a style-embedding
of 64-dimension. The style-embedding is added to in-
put viseme features and fed into 4 successive linear layers

which have a leaky-ReLU as activation. The output dimen-
sion of the 4-layer block is 64 dimensional. A final fully
connected layer maps the 64-dimension input features to the
3D face deformation described as per-vertex displacements
of size 15069. This layer is defining the motion deforma-
tion basis of a subject and is adapted based on a reference
sequence.
Training Details: We use the ADAM optimizer with a
learning rate of 1e-4 for both the style-agnostic trans-
former training and the style adaptation stage. During the
style-agnostic transformer training, the parameters of the
Wave2Vec 2.0 layers in the audio encoder are fixed. Our
model is trained for 300 epochs, and the best model is cho-
sen based on the validation loss. During the style-adaptation
stage, we first generate the viseme features and keep them
fixed during the style adaptation stage. Then, we optimize
for the style embedding for 300 epochs. Finally, the style-
embedding and final motion deformation basis is refined
for another 300 epochs. For generalized training, we use
the following weights �MSE = 1.0, �vel = 10.0, and
�lip = 5.0. For style-adaption on the VOCAset and ex-
ternal sequence, we use the �vel = 1.0 and �vel = 10.0
for best performance. Additionally, based on the speaking
style of the target actor, we observed that training for longer
epochs tends to improve expressiveness. However, for stan-
dard evaluation, we perform style-adaption for 300 epochs
as explained earlier.

4. Broader Impact

Our proposed method aims at the synthesis of realistic-
looking 3D facial animations. Ultimately, these animations
can be used to drive photo-realistic digital doubles of people
in audio-driven immersive telepresence applications in AR
or VR. However, this technology can also be misused for
so-called DeepFakes. Given a voice cloning approach, our
method could generate 3D facial animations that drive an
image synthesis method. This can lead to identity theft, cy-
ber mobbing, or other harmful criminal acts. We believe
that conducting research openly and transparently could
raise awareness of the misuse of such technology. We
will share our implementation to enable research on digi-
tal multi-media forensics. Specifically, synthesis methods
are needed to produce the training data for forgery detec-
tion [4].
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